“…While the majority of publications (43%) utilized computational techniques to target cancer broadly, including identifying inhibitors ( Brewer et al, 2014 ; Zhong et al, 2015 ; Shafique et al, 2016 ; Ulfa et al, 2017 ; Çınaroğlu and Timuçin, 2019 ; Siam et al, 2020 ), agonists ( Kaur et al, 2015 ; Wang et al, 2018 ), Drug-Target interaction predictions ( Emig et al, 2013 ; Kuthuru et al, 2019 ), and virtual screening ( Rocca et al, 2016 ; Spiliotopoulos et al, 2017b ; Lagarde et al, 2018 ), a portion of the literature concentrated on specific cancer types. Among these, breast cancer (12%) ( Emig et al, 2013 ; Jiang et al, 2017 ; Montes-Grajales et al, 2018 ; Velázquez-Quesada et al, 2020 ; Chequin et al, 2021 ), lymphomas and leukemias (9%) ( Lara-Castillo et al, 2016 ; Sohraby et al, 2017 ; Karube et al, 2018 ; Sahrawat and Kaur, 2019 ; Boulos et al, 2021 ; Parcha et al, 2021 ), lung (6%) ( Kwon et al, 2020 ; Saranyadevi, 2021 ), colorectal (5%) ( Liñares-Blanco et al, 2020 ; Biswas et al, 2021 ; Deokar and Shaikh, 2022 ; Leung et al, 2022 ), and prostate (4%) ( Kang et al, 2018 ; Ariey-Bonnet et al, 2020 ; Benavides-Serrato et al, 2020 ; Liu et al, 2021 ; Lin et al, 2022 ) cancers were the most frequently investigated ( Figure 3B ).…”