In the face of escalating cyberbullying and its associated online activities, devising effective mechanisms for its detection remains a critical challenge. This study proposes an innovative approach, integrating Long Short-Term Memory (LSTM) networks with Convolutional Neural Networks (CNN), for the detection of cyberbullying in online textual content. The method uses LSTM to understand the temporal aspects and sequential dependencies of text, while CNN is employed to automatically and adaptively learn spatial hierarchies of features. We introduce a hybrid LSTM-CNN model which has been designed to optimize the detection of potential cyberbullying signals within large quantities of online text, through the application of advanced natural language processing (NLP) techniques. The paper reports the results from rigorous testing of this model across an extensive dataset drawn from multiple online platforms, indicative of the current digital landscape. Comparisons were made with prevailing methods for cyberbullying detection, demonstrating a substantial improvement in accuracy, precision, recall and F1-score. This research constitutes a significant step forward in developing robust tools for detecting online cyberbullying, thereby enabling proactive interventions and informed policy development. The effectiveness of the LSTM-CNN hybrid model underscores the transformative potential of leveraging artificial intelligence for social safety and cohesion in an increasingly digitized society. The potential applications and limitations of this model, alongside avenues for future research, are discussed.