The distinct behaviors of blue- and redshifted broad emission-line shifts, emitted by ionic species with varying ionization potentials in active galactic nuclei (AGN), can be elucidated by considering the balance between radiation and gravitational forces along the quasar main sequence. Blueshifts are attributed to outflowing motions of the line-emitting gas toward the observer, and they are most pronounced in AGN with high Eddington ratios (Population A) and high luminosities. Conversely, redshifts in the broad-line wings are observed in Balmer emission lines of sources radiating at low Eddington ratios (Population B), though the origin of these redshifts remains a subject of ongoing debate. A correlation linking the redward asymmetry as measured by the centroid shift of the Hβ line profile to the black hole mass lends support to the notion that these shifts arise from gravitational and transverse redshift effects, particularly for black hole masses MBH≳108.7 M⊙.