Two color resonance-enhanced multiphoton ionization (REMPI) scheme of NO(2) through the E (2)Sigma(u)(+) (3psigma) Rydberg state was used to prepare NO(2)(+) in its ground and (100), (010), (02(0)0), (02(2)0), and (001) vibrational states. Photoelectron spectroscopy was used to verify >96% state selection purity, in good agreement with results of Bell et al. for a similar REMPI scheme. The effects of NO(2)(+) vibrational excitation on charge transfer with NO have been studied over the center-of-mass collision energy (E(col)) range from 0.07 to 2.15 eV. Charge transfer is strongly suppressed by collision energy at E(col) < approximately 0.25 eV but is independent of E(col) at higher energies. Mode-specific vibrational effects are observed for both the integral and differential cross-sections. The NO(2)(+) bending vibration strongly enhances charge transfer, with enhancement proportional to the bending quantum number, and is not dependent on the bending angular momentum. The enhancement results from increased charge transfer probability in large impact parameter collisions that lead to small deflection angles. The symmetric stretch also enhances reaction at low collision energies, albeit less efficiently than the bend. The asymmetric stretch has virtually no effect, despite being the highest-energy mode. A model is proposed to account for both the collision energy and the vibrational state dependence.