The authors believe that the main reason for the formation of the Siberian LIPs may be the nonlinear "Collisions Aggregation Effect" caused by a meteorite impact in the Falkland Plateau crater or Wilkes Land crater, and the correspondence of the Falkland Plateau crater may be better. As a result, the authors have reached the following conclusions and understandings: 1. The late Permian: the siberian LIPs are in the Siberian plate at 60°N, 80°E; the Falkland Plateau crater is located in the southwestern corner of the Gondwana, about at 70°S, 30°E, at the southernmost point of the South American plates, close to the southern orogenic belt of the South America and the stress state of the Falkland Plateau crater may be under pressure; the Wilkes Land crater may be located at 60°S, 110°E, at the eastern Antarctic continent, close to the Australian plate, is not located in the orogenic belt and the stress state of the Wilkes Land crater should not be pressure-type, but is in a wide range of ice covered area; 2. Figure 6 and 7 show the location relationship between the Siberian LIPs and Falkland Plateau crater or Wilkes Land crater does not have a antipodal characteristic, nor have a linear "Collisions Aggregation Effect" profile, but have a nonlinear "Collisions Aggregation Effect" distribution, the Falkland Plateau crater correspondence may be better; 3. Whether or not the Falkland Plateau crater or Wilkes Land crater was finally confirmed as a true meteorite crater, their relationships with the Siberian LIPs should have a nonlinear distribution of "Collisions Aggregation Effect" when the time they formed close to the Siberian LIPs, and is the main reason for the formation of the Siberian LIPs. The velocity vector direction of the meteorite impact may have a smaller angle of impact, and significantly eastward (relative to the Earth's center); 4. About the celestial body which its impact can form LIPs or cause the formation of LIPs, it should have: the impact time should be earlier than LIPs or almost simultaneously; a certain size; the "impact point" and the LIPs distribution area have the "Collisions Aggregation Effect" distribution characteristics; 5. Figure 2 shows a possible formation model about LIPs of a celestial body collision: due to the violent impact of a celestial body, created a tectonic weakness in the crust, even up to the crust-mantle boundary, a fault zone pointing to the Earth's center, and a radial spherical fracture group at the "impact point" or "collisions aggregation point"; the magma originating from the mantle intrude along the weak zone under pressure, a large number of magma invaded and gathered in the radial spherical fracture group, causing the overlying strata rising slowly, forming a dome and a similar head-tail structure of the mantle plume that the head dilated, tail slender deep into the mantle on the longitudinal.