The onset of self-excited oscillations in airways and blood vessels is a common phenomenon in the human body, connected to both normal and pathological conditions. A recent experimental investigation has shown that the onset of self-excited oscillations happens for values of the intramural pressure close to the contact critical pressure. The goal of this work is to analyse the dependence of the contact critical pressure on the vessel’s geometric parameters. The methodology is based on the implementation of an experimentally validated computational model of a collapsible tube. The results confirm the correlation between the contact critical pressure and the onset of self-excited oscillations in collapsible tubes. Moreover, a set of general equations to compute the contact critical pressure and the corresponding areas of collapsible tubes with arbitrary geometries has been derived.