Thermoelectric materials constitute an alternative to harvest sustainable energy from waste heat. Among the most commonly utilized thermoelectric materials, we can mention Bi 2 Te 3 (hole and electron conductivity type), PbTe and recently reported SnSe intermetallic alloys. We review recent results showing that all of them can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. These materials have been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM) and electronic and thermal transport measurements. Analysis of NPD patterns demonstrates near-perfect stoichiometry of above-mentioned alloys and fair amount of anharmonicity of chemical bonds. SEM analysis shows stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces parallel to layered slabs. This nanostructuration affects notably thermoelectric properties, involving many surface boundaries (interfaces), which are responsible for large phonon scattering factors, yielding low thermal conductivity. Additionally, we describe homemade apparatus developed for the simultaneous measurement of Seebeck coefficient and electric conductivity at elevated temperatures.