This study delves into the early development of Vieja fenestrata (Cichlidae), with a specific focus on the description of external morphological and morphometric changes, and growth patterns from hatching to the loss of larval characters under controlled laboratory conditions at a temperature of 28°C. Asynchronous hatching was observed between 58 and 60 h postfertilization, with the posterior body emerging first. Over 14 days, significant morphological, physiological, and behavioral changes were observed, revealing a complex developmental trajectory. The initial developmental phases were characterized by rapid vascularization, fin differentiation, and heightened activity, and the subsequent days witnessed the flexion of the notochord, emergence of swim bladder functionality, and transition to exogenous feeding. Maturation progressed with the absorption of the yolk sac, regression of cement glands, and fin ray development, culminating in metamorphosis by 14 days post‐hatching. Throughout this period, evolving pigmentation patterns and structural adaptations highlight the species' adaptive strategies. During the larval period of V. fenestrata, substantial changes in morphological proportions were observed. Before the inflection, tail length, trunk length, and body depth had negative allometric growth, and head length, eye diameter, and snout length had positive allometric growth. After the inflection, body depth and snout length showed positive allometric growth; head length and trunk length exhibited isometric growth, whereas tail length and eye diameter demonstrated negative allometric growth. These findings contribute insights into the intricate developmental dynamics of V. fenestrata. Moreover, further research may explore these developmental dynamics' ecological and evolutionary implications.