Wastewater-based Epidemiological (WBE) surveillance offers a promising approach to assess the pandemic situation covering pre-symptomatic and asymptomatic cases in highly populated area under limited clinical tests. In the present study, we analysed SARS-CoV-2 RNA in the influent wastewater samples (
n
= 43) from four wastewater treatment plants (WWTPs) in Gandhinagar, India, during August 7
th
to September 30
th
, 2020. A total of 40 samples out of 43 were found positive i.e. having at least two genes of SARS-CoV-2. The average Ct values for S, N, and ORF 1ab genes were 32.66, 33.03, and 33.95, respectively. Monthly variation depicted a substantial rise in the average copies of N (∼120%) and ORF 1ab (∼38%) genes in the month of September as compared to August, while S-gene copies declined by 58% in September 2020. The SARS-CoV-2 genome concentration was higher in the month of September (∼924.5 copies/L) than August (∼897.5 copies/L), corresponding to a ∼ 2.2-fold rise in the number of confirmed cases during the study period. Further, the percentage change in genome concentration level on a particular date was found in the lead of 1-2 weeks of time with respect to the official confirmed cases registered based on clinical tests on a temporal scale. The results profoundly unravel the potential of WBE surveillance to predict the fluctuation of COVID-19 cases to provide an early warning. Our study explicitly suggests that it is the need of hour that the wastewater surveillance must be included as an integral part of COVID-19 pandemic monitoring which can not only help the water authorities to identify the hotspots within a city but can provide up to 2 weeks of time lead for better tuning the management interventions.