2019
DOI: 10.1021/acs.iecr.9b00426
|View full text |Cite
|
Sign up to set email alerts
|

Froth Stereo Visual Feature Extraction for the Industrial Flotation Process

Abstract: Froth visual features are closely related to flotation performance, and accurate extraction of froth visual features through machine vision allows improved control and optimization of the flotation process. However, the conventional froth features extracted from single two-dimensional (2D) images are inadequate to fully characterize froth features due to the loss of depth information. In this paper, we present a new method of stereo visual feature extraction on single 2D images for significantly improving frot… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 35 publications
0
2
0
3
Order By: Relevance
“…The collected froth flotation images underwent image preprocessing, utilizing a fixed threshold 5 × 5 convolutional kernel Sobel edge detection algorithm, followed by nonmaximum suppression for refinement [23][24][25][26][27]. This process involved filtering [28], grayscale equalization [29], and edge extraction [30], ultimately converting the images into binary representations [31]. Given the complexity of the froth flotation video sequences, this study employed the Hough transform ellipse detection algorithm [32][33][34].…”
Section: Froth Flotation Foam Feature Extractionmentioning
confidence: 99%
“…The collected froth flotation images underwent image preprocessing, utilizing a fixed threshold 5 × 5 convolutional kernel Sobel edge detection algorithm, followed by nonmaximum suppression for refinement [23][24][25][26][27]. This process involved filtering [28], grayscale equalization [29], and edge extraction [30], ultimately converting the images into binary representations [31]. Given the complexity of the froth flotation video sequences, this study employed the Hough transform ellipse detection algorithm [32][33][34].…”
Section: Froth Flotation Foam Feature Extractionmentioning
confidence: 99%
“…Предварительно данные бликовой обработки видеопотока [11] фильтровались сглаживанием по нескольким (3,5,10,20) точкам. Использование методов неслепой фильтрации (наподобие фильтра Калмана [12,13]) в данном случае затруднительно, так как они работают в два этапа [14].…”
Section: рис 5 алгоритм идентификации запаздывания и постоянной време...unclassified
“…Интересно, что постоянные времени процесса при этом получаются различные (36,75 с и 5,52 с соответственно). Значение 36,75 с достаточно хорошо соответствует монографии [6] и статье [5].…”
Section: решение задачи фильтрацииunclassified
See 1 more Smart Citation
“…These factors include the addition of flotation reagents and the amount of aeration by observing the characteristic information of the foam surface. However, owing to subjective bias, production environment changes, and other factors, the findings of manual judgment are frequently inaccurate, causing frequent fluctuations in flotation production indicators and low utilization of mineral resources . Consequently, using machine vision to capture the characteristic information of flotation foam, to monitor and identify the foam in the flotation process in real time, and to guide the adjustment of production factors, such as reagent dosage and liquid level, affecting flotation production increases the yield and economic benefits of the flotation concentrate in a coal washing plant. …”
Section: Introductionmentioning
confidence: 99%