In response to housing shortages in densely inhabited urban areas, there is a search for structural engineering solutions for serial and modular construction. Prefabricated concrete columns can make an important difference. Using industrial manufacturing processes, it is possible to produce highly loadable, durable and true-to-size columns that enable accelerated construction progress and dismantling or reuse of the components at the end of the structure’s economic life. However, there are challenges in designing the detachable connection between highly loaded columns due to an undesired reduction of the load-bearing capacity on the one hand and a high sensitivity to geometrical deviations on the other hand. To investigate the load-bearing and deformation behaviour of butt-jointed columns, large-scale component tests as well as three-dimensional numerical analyses using the finite element method were carried out. The analyses show that measures to increase the stiffness of the joint, such as thicker steel plates, lower mortar thickness, etc., lead to an increase of the ultimate load. It could also be demonstrated that butt-jointed columns are very sensitive to unevenness of the end faces. Finally, the investigations allow first conclusions on the design and detailing of detachable compression connections between prefabricated concrete columns.