Chemical management of the peach fly, Bactrocera zonata has been compromised due to adverse effects of pesticide residues that not only contaminate environment but also affect non-target organisms including beneficial insects, birds, aquatic life, and soil microorganisms. They can be impacted through direct exposure or by consuming contaminated prey or plants. The present study was designed keeping in view this increasing demand of the consumers to get pesticide residue free fruit and vegetable produce because it reflects the growing consumer concern for food safety and environmental sustainability, motivating the need for alternative pest management strategies. The field experiment was conducted to determine the best slow-release formulation prepared by mixing the following five different types of waxes, including Candelilla wax (CanW), Paraffin wax (PW), Carnauba wax (CarW), Lanolin wax (LW) and Bees wax (BW) with methyl eugenol (ME) (to attract male B. zonata). The selection of the five different types of waxes was likely based on their biodegradability, availability, and potential for slow-release properties. The result revealed that formulations containing SRF-7[LW], SRF-9[CanW], SRF-8[BW], SRF-9[CarW] and SRF-9[PW] exhibited the maximum capture of 42.10 ± 8.14, 43.30 ± 1.76, 34.30 ± 2.96, 35.30 ± 3.18 and 22.70 ± 3.18 male B. zonata per trap per day, respectively. These effective formulations were further evaluated in experiment in which the comparative trapping efficiency of each wax formulation was assessed. The results demonstrated that formulation containing SRF-9[CanW] was expressed maximum capture 13.77 ± 1.26 male B. zonata per trap per day. These formulations were further evaluated in another experiment in which the trapping efficiency was assessed by four different application methods (simple bottle trap, simple bottle trap with water, yellow sticky trap and jute piece with sticky material). The results demonstrated that formulation containing SRF-9[CarW] applied by yellow sticky trap (YST) trapped 61.74 + 7.69 male B. zonata per trap per day and proved more effective. This formulation can be recommended for trapping and management of male population of B. zonata in fruit orchards. This study can influence eco-friendly B. zonata pest control policies, reducing chemical pesticide usage and promoting agricultural sustainability. Future research should study the long-term impact of slow-release formulations on agricultural sustainability, including pest control, crop yield, and agroecosystem health.