Climate changes, which result in the occurrence of periods with relatively high temperatures during the winter, can lead to the deacclimation of cold-hardened plants and cause problems with their winter survival. The aim of these studies was to investigate the physiological changes (photosynthesis and water relations including aquaporin expression) that accompany deacclimation process in the economically important winter oilseed rape plants. The effect of deacclimation on frost tolerance was also estimated for two tested cultivars: semi-dwarf and plants of a normal height. After cold acclimation at 4 °C (compared to the unacclimated control) the typical changes that accompany cold acclimation such as an increase in the content of water-soluble sugars or a lower water content in the leaves, which lead to an increased frost tolerance, were observed. Deacclimation partially or completely reversed these changes, which resulted in a decreased frost tolerance that was accompanied by a decrease in the content of sugars and an increase of the osmotic potential. The chemical composition of the leaves, which was measured using FT-Raman spectroscopy also clearly confirmed the metabolic differences between the cold-acclimated and deacclimated plants. The plants were significantly different in regard to the content of the various pigments as well as fatty acids and polysaccharides. The phenomenon of a deacclimation-induced decrease in aquaporin PIP1 accumulation, which was accompanied by unchanged PIP1 transcript accumulation, will be discussed in the aspects of the water relations and decreased frost tolerance in deacclimated plants.