Fixed carbon content is an important factor in measuring the carbon content of gangue, which is important for monitoring the spontaneous combustion of gangue and reusing coal gangue resources. Although traditional measurement methods of fixed carbon content, such as chemical tests, can achieve high accuracy, meeting the actual needs of mines via these tests is difficult because the measurement process is time consuming and costly and requires professional input. In this paper, we obtained the thermal infrared spectrum of coal gangue and developed a new spectral index to achieve the automated quantification of fixed carbon content. Thermal infrared spectroscopy analyses of 42 gangue and three coal samples were performed using a Turbo FT thermal infrared spectrometer. Then, the ratio index (RI), difference index (DI) and normalized difference index (NDI) were defined based on the spectral characteristics. The correlation coefficient between the spectral index and the thermal infrared spectrum was calculated, and a regression model was established by selecting the optimal spectral DI. The model prediction results were verified by a ten times 5-fold cross-validation method. The results showed that the mean error of the proposed method is 5.00%, and the root mean square error is 6.70. For comparison, the fixed carbon content was further predicted by another four methods, according to the spectral depth H, spectral area A, the random forest and support vector machine algorithms. The predicted accuracy calculated by the proposed method was the best among the five methods. Therefore, this model can be applied to predict the fixed carbon content of coal gangue in coal mines and can help guide mine safety and environmental protection, and it presents the advantages of being economic, rapid and efficient.