Morphing wings made a significant advancement in aircraft engineering by improving aerodynamic performance for better fuel efficiency and are still under research. This paper reviewed and investigated some morphing wing types including the variable sweep, trailing edge, leading edge, variable span, variable chord, or scale, and airfoil morphing among others. Based on the review, two types of morphing wings were chosen for detailed investigation, and they were variable span and variable scale. Each morphing concept from the selected morphing wing types was implemented in airfoil wing configuration for aerodynamic performance analysis. Computational Fluid Dynamics (CFD) simulation is used to design and analyse morphing wing configurations of the chosen morphing concepts. In this research, two CFD analyses were investigated based on wing configuration; each consists of chosen morphing concept. Before the main CFD simulation of morphing wing analysis, CFD analysis of reference data of a typical NACA 2415 airfoil was verified. The lift coefficient of the morphing wing obtained from CFD analysis was compared with the unmorphed NACA airfoil wing to evaluate the morphing wing’s aerodynamic performance. It is concluded that there is an improvement in lift coefficients using the morphing concept cases, showing improved aerodynamic performance.