A trend towards the increasing use of Adaptive Mesh Refinement (AMR) algorithms to simulate combustion processes is seen in the recent literature. AMR is attractive as it enables the physical phenomena of interest to be tracked by the numerical mesh, reducing the computational cost drastically. It is particularly efficient for combustion as small computational cells are needed very locally to resolve the flame structure. However, the questions arising from the coupling between AMR and the turbulent flame propagation has rarely been investigated so far. Indeed, the incomplete cascading of turbulent structures from a relatively coarse mesh used to solve the flow to a finer mesh solving the flame has implications on the turbulent combustion model which must be considered. In the present paper, a strategy for coupling AMR with the Thickened Flame Model (TFM) is proposed. It is shown that, under conditions relevant to industrial cases, the standard TFM model strongly under-estimates the turbulent flame propagation when the effects of AMR is not taken into account. A new model, AMR-E, is introduced to take this effect into account. The behavior of the model is first analyzed on an a priori 1Dstudy and is consequently validated on a 3-D turbulent flame propagation in Homogeneous Isotropic Turbulence (HIT). In particular, it is shown that the C.