The flexibility and feasibility of a 5 kW SOFC generator designed for natural gas (NG) and fuelled by a non‐conventional liquid fuel such as ethanol is analysed. A complete generator model is implemented to predict and determine the main criticalities when ethanol fuel is adoperated. The main balance‐of‐plant (BoP) units considered are the reformer, the recirculation system based on an ejector, the tubular cells bundles constituting the stack unit, the after‐burner zone and the air blower. The electrical and global efficiencies achieved at nominal operating conditions show how ethanol maintains generator performance good, while only slightly reducing the system AC efficiency from 48% (achieved by NG) to 45%. The effectiveness and flexibility of the recirculation system when changing the fuel is also verified since a safe steam‐to‐carbon ratio (STCR) is established after the fuel is switched from NG ethanol. The stack thermal management is analysed in detail and related to the system performances, showing how a high endothermic fuel reforming reaction is required to maintain the overall system efficiency. A preliminary experiment with ethanol feeding the Siemens generator is finally presented. The system response to the new fuel is monitored by several measured parameters and the system regulation is explained.