PREFACETo detect and identify defects in machine condition health monitoring, classical neural classifiers, such as Multilayer Perceptron (MLP) neural networks, are proposed to supervise the monitored system. A drawback of classical neural classifiers, off-line and iterative learning algorithms, is a long training time. In addition, they are often stuck at local minima, unable to achieve the optimum solution. Furthennore, in an operating mode, it is possible that new faults are developing while a monitored system is running.These new classes of defects need to be instantly detected and distinguished from those Training by various torque levels, the network achieved 100% correct prediction for the same torque level of testing data. Furthermore, the classification performance of the network has been tested using other benchmark data, such as the Fisher's Iris data, the two-spiral problem, and a vowel data set. Comparison studies among other well-known classifiers were preformed. The ILFN was found competitive with or even superior to many classifiers.tV ACKNOWLEDGMENTS