In this paper, deformation and fracture behavior of glass sphere filled epoxy functionally graded materials (FGM) are numerically evaluated and experimentally studied. The fabrication of the FGM is described in detail, and the spatial gradation of elastic modulus and the microscopic structure in FGM are measured and analyzed. The deformation and fracture characterization of the FGM specimen with a crack oriented along the direction of the elastic gradient under three point bend are studied by the experimental and the finite element method. The influences of crack location at both the stiff and the compliant sides of the FGM specimen on crack initiation, deformation field and stress intensity factor are analyzed. The results are: (a) The neutral-axis in the FGM specimen under three-point-bending will shift toward the stiffer side; (b) The initial fracture load increases with the increase of elastic modulus at the crack tip; (c) The elastic gradients shield a crack on the compliant side and lower the stress intensity factor when compared to the one with crack on the stiff side. These results will be useful for better design and reliable evaluation of FGM.Key words functionally graded material . fracture and deformation . stress intensity factor . digital speckle correlation method (DSCM) . strain gauge Appl Compos Mater (2006) 13: 407-420