Abstract:Computational modeling and simulation are commonly used during the development of cardiovascular implants to predict peak strains and strain amplitudes and to estimate the associated durability and fatigue life of these devices. However, simulation validation has historically relied on comparison with surrogate quantities like force and displacement due to barriers to direct strain measurement-most notably, the small spatial scale of these devices. We demonstrate the use of microscale two-dimensional digital i… Show more
Full-field measurement techniques are now mature. As such, they have profoundly impacted the experimental mechanics community in recent years. The way that shape memory alloys (SMAs) are now tested is not spare from this deep-rooted trend, as reflected by the increasing number of papers published in the SMA literature. In this context, the aim of this contribution is to give an overview of the use of full-field measuring techniques for SMA characterization purposes. We recall first the basic principle of one volume and four surface techniques employed in this community. Several typical papers where such techniques are employed are then presented, by highlighting in each case the extent to which the thermomechanical response of SMAs could be better understood and modeled thanks to these techniques. A classification by several criteria of about 300 references is finally offered and discussed. The main criteria are the type of SMA, the type of technique employed to perform the measurements, and the type of test.
Full-field measurement techniques are now mature. As such, they have profoundly impacted the experimental mechanics community in recent years. The way that shape memory alloys (SMAs) are now tested is not spare from this deep-rooted trend, as reflected by the increasing number of papers published in the SMA literature. In this context, the aim of this contribution is to give an overview of the use of full-field measuring techniques for SMA characterization purposes. We recall first the basic principle of one volume and four surface techniques employed in this community. Several typical papers where such techniques are employed are then presented, by highlighting in each case the extent to which the thermomechanical response of SMAs could be better understood and modeled thanks to these techniques. A classification by several criteria of about 300 references is finally offered and discussed. The main criteria are the type of SMA, the type of technique employed to perform the measurements, and the type of test.
“…NiTi processed with higher Ti content results in martensitic (B19’ monoclinic crystal structure) phase at room temperature, which translates into higher transformation temperatures and a prominent shape memory effect. A matrix with higher Ni content results in austenitic (BCC B2 crystal structure) phase at room temperature, possesses lower transformation temperatures, and exhibits superelastic properties [ 2 , 3 , 4 ]. Martensite is characterized by needle-like crystals arrayed in a herringbone shape.…”
Nitinol (NiTi) alloys are gaining extensive attention due to their excellent mechanical, superelasticity, and biocompatibility properties. It is difficult to model the complex mechanical behavior of NiTi alloys due to the solid-state diffusionless phase transformations, and the differing elasticity and plasticity presenting from these two phases. In this work, an Auricchio finite element (FE) model was used to model the mechanical behavior of superelastic NiTi and was validated with experimental data from literature. A Representative Volume Element (RVE) was used to simulate the NiTi microstructure, and a microscale study was performed to understand how the evolution of martensite phase from austenite affects the response of the material upon loading. Laser Powder Bed Fusion (L-PBF) is an effective way to build complex NiTi components. Porosity being one of the major defects in Laser Powder Bed Fusion (L-PBF) processes, the model was used to correlate the macroscale effect of porosity (1.4–83.4%) with structural stiffness, dissipated energy during phase transformations, and damping properties. The results collectively summarize the effectiveness of the Auricchio model and show that this model can aid engineers to plan NiTi processing and operational parameters, for example for heat pump, medical implant, actuator, and shock absorption applications.
“…Nowadays, it is one of the most common approaches for studying both strain and fracture processes in heterogeneous materials [1,2]. In addition, the DIC method found wide application in solving various scientific and technical problems in materials science [1,3,4], solid mechanics [5], biomedicine [6][7][8], civil engineering [9][10][11][12][13], non-destructive testing (NDT), structural health monitoring (SHM), etc.…”
(1) Background: this study deals with design of an automated laboratory facility based on a servo-hydraulic testing machine for estimating parameters of mechanical hysteresis loops by means of the digital image correlation (DIC) method. (2) Methods: the paper presents a description of the testing facility, describes the grounds for calculating the elastic modulus, the offset yield strength (OYS) and the parameters of the mechanical hysteresis loops by the DIC method. (3) Results: the developed hardware-software facility was tested by studying the fatigue process in neat polyimide (PI) under various amplitude tension-tension loadings. It was found that the damage accumulation was accompanied by the decrease in the loop areas, while failure occurred when it reduced by at least ~5 kJ/m3. (4) Conclusions: it was shown that lowering the loop area along with changing the secant modulus value makes it possible to estimate the level of the scattered damage accumulation (mainly at the stresses above the OYS level). It was revealed that fractography data, namely the pattern and sizes of the fatigue crack initiation and propagation zones, did not correlate well with the dependences of the parameters of the hysteresis loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.