Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Oligo-astheno-teratozoospermia (OAT), a recurent cause of male infertility, is the most frequent disorder of spermatogenesis with a probable genetic cause. Patients and mice bearing mutations in theARMC2gene have a decreased sperm concentration, and individual sperm show multiple morphological defects and a lack of motility – a canonical OAT phenotype. Intra Cellular Sperm Injection (ICSI) is required to treat such a condition but it has limited efficacy and was associated with a small increase in birth defects. Consequently, new targeted treatments are needed to restore spermatogenesis. Here, a combination ofin vivoinjection and electroporation of capped and poly-A-tailed naked mRNA is tested as a strategy to treatARMC2-related infertility in mouse. mRNAs coding for several reporter genes are tested and the efficiency and the kinetic of expression are assessed usingin vivoandin vitro2D and 3D imaging experiments. We show that mRNA-coded reporter proteins are detected for up to 3 weeks mostly in germ cells, making the use of mRNA possible to treat infertility. We compare these results with those obtained with a more conventional DNA plasmid vector. In contrast, the use of the non-integrative plasmid Enhanced Episomal Vector (EEV) shows low and transient expression in spermatogenic cells. Consequently, injection and electroporation of naked mRNA-Armc2into the testes ofArmc2-deficient males were performed and we show the presence of normal and motile sperm in the epididymis. This study shows for the first time that mRNA-Armc2efficiently restores spermatogenesis and opens new paths for male infertility treatment.Ethics statementAll procedures involving animals were performed in line with the French guidelines for the use of live animals in scientific investigations. The study protocol was approved by the local ethics committee (ComEth Grenoble #318) and received governmental authorization (ministerial agreement #38109-2022072716142778).
Oligo-astheno-teratozoospermia (OAT), a recurent cause of male infertility, is the most frequent disorder of spermatogenesis with a probable genetic cause. Patients and mice bearing mutations in theARMC2gene have a decreased sperm concentration, and individual sperm show multiple morphological defects and a lack of motility – a canonical OAT phenotype. Intra Cellular Sperm Injection (ICSI) is required to treat such a condition but it has limited efficacy and was associated with a small increase in birth defects. Consequently, new targeted treatments are needed to restore spermatogenesis. Here, a combination ofin vivoinjection and electroporation of capped and poly-A-tailed naked mRNA is tested as a strategy to treatARMC2-related infertility in mouse. mRNAs coding for several reporter genes are tested and the efficiency and the kinetic of expression are assessed usingin vivoandin vitro2D and 3D imaging experiments. We show that mRNA-coded reporter proteins are detected for up to 3 weeks mostly in germ cells, making the use of mRNA possible to treat infertility. We compare these results with those obtained with a more conventional DNA plasmid vector. In contrast, the use of the non-integrative plasmid Enhanced Episomal Vector (EEV) shows low and transient expression in spermatogenic cells. Consequently, injection and electroporation of naked mRNA-Armc2into the testes ofArmc2-deficient males were performed and we show the presence of normal and motile sperm in the epididymis. This study shows for the first time that mRNA-Armc2efficiently restores spermatogenesis and opens new paths for male infertility treatment.Ethics statementAll procedures involving animals were performed in line with the French guidelines for the use of live animals in scientific investigations. The study protocol was approved by the local ethics committee (ComEth Grenoble #318) and received governmental authorization (ministerial agreement #38109-2022072716142778).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.