Conical-shaped cutterhead is one type of tunnel boring machine (TBM) cutterhead which may have advantage of high rock-breaking efficiency in extremely hard rock ground. This study investigated the rock-fragmentation process of disc cutters on the conical-shaped cutterhead via a series of numerical simulations that had been verified by laboratory rock-fragmentation tests. Firstly, the rock-fragmentation numerical model of the six cutters in the 'flat-cone' contiguous part was built based on cutting mode analysis of the conical-shape cutterhead. The rock sample in the numerical model was synthesized using a grain-based discrete element method (GB-DEM) and the reliability of this approach was verified via scaled rock-fragmentation tests conducted on a self-developed linear cutting machine (LCM). Then, a series of numerical simulations were conducted to study the influence of cutterhead cone angle, cutter spacing, and cutter installation angle on the rock-fragmentation performance. The results were as follows: 1) the nature of rock fragmentation in the cone area is the rock fragmentation under side free-face condition; 2) the penetration specific energy can be reduced and thus the rock-fragmentation efficiency can be improved by appropriately increasing the conical angle, reducing the cutter spacing, and increasing the cutter installation angle; 3) for the studied granite, the optimal conical angle is 25°, the cutter spacing is suggested to be no more than 70 mm, and the cutter tilt angle is suggested to be no more than 3°. The results obtained in this paper can be used as guidance for the design of the conical-shaped cutterhead.