Acetate production from food waste or sewage sludge was evaluated in four semi-continuous anaerobic digestion processes. To examine the importance of inoculum and substrate for acid production, two different inoculum sources (a wastewater treatment plant (WWTP) and a co-digestion plant treating food and industry waste) and two common substrates (sewage sludge and food waste) were used in process operations. The processes were evaluated with regard to the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis and the microbial community structure was determined. Feeding sewage sludge led to mixed acid fermentation and low total acid yield, whereas feeding food waste resulted in the production of high acetate and lactate yields. Inoculum from WWTP with sewage sludge substrate resulted in maintained methane production, despite a low hydraulic retention time. For food waste, the process using inoculum from WWTP produced high levels of lactate (30 g/L) and acetate (10 g/L), while the process initiated with inoculum from the co-digestion plant had higher acetate (25 g/L) and lower lactate (15 g/L) levels. The microbial communities developed during acid production consisted of the major genera Lactobacillus (92-100%) with food waste substrate, and Roseburia (44-45%) and Fastidiosipila (16-36%) with sewage sludge substrate. Use of the outgoing material (hydrolysates) in a biogas production system resulted in a non-significant increase in bio-methane production (+5-20%) compared with direct biogas production from food waste and sewage sludge.by slower-growing bacteria that thrive best at neutral pH. These differences in reaction speed and pH optimum allow AD to be divided into two separate production steps, where H 2 and VFA are generated in a primary acid reactor and bio-methane in a secondary reactor. This two-stage approach has been shown to optimize the overall AD process and increase methane yield [3][4][5][6][7][8]. It also allows additional applications, such as the production of bio-hydrogen or of a range of VFA that can be extracted and used as "green" chemical feedstock for further conversion [8,9]. The typical VFA composition in an acidic AD reactor is a mixture dominated by acetate, propionate, butyrate, and valerate [10-13], but it can also be dominated by acetate, butyrate, and H 2 [14], or mainly consist of lactate and/or acetate [15,16]. The amount and type of acid produced depend on both chemical, technical, and microbiological parameters, often interlinked. Parameters shown to be of importance include, for example, reactor configuration, substrate composition and pre-treatment, hydraulic retention time (HRT), temperature, pH, as well as the choice of inoculum and final microbial composition [10,11,[17][18][19][20][21][22].Among the different acids that can be produced in a two-stage set-up, acetate is a highly interesting compound. In addition to being an energy carrier between different stages within AD, it can be used for the production of value-added products such as biopolymers, com...