2017
DOI: 10.1103/physrevb.96.184521
|View full text |Cite
|
Sign up to set email alerts
|

Full-switching FSF-type superconducting spin-triplet magnetic random access memory element

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

2
23
0
1

Year Published

2017
2017
2022
2022

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(26 citation statements)
references
References 151 publications
2
23
0
1
Order By: Relevance
“…Unlike conventional electronics, spintronics uses not only charge transfer, but also the electron spin in solids, which serves to solve the problem of transporting and recording information [1][2][3][4][5][6][7]. Based on the basic non-dissipative elements of spintronics, it is possible to create new devices of superconducting nanoelectronics, consuming a minimum of energy and having high speed [8][9][10][11][12][13][14].…”
Section: Introductionmentioning
confidence: 99%
“…Unlike conventional electronics, spintronics uses not only charge transfer, but also the electron spin in solids, which serves to solve the problem of transporting and recording information [1][2][3][4][5][6][7]. Based on the basic non-dissipative elements of spintronics, it is possible to create new devices of superconducting nanoelectronics, consuming a minimum of energy and having high speed [8][9][10][11][12][13][14].…”
Section: Introductionmentioning
confidence: 99%
“…Если фокусом исследования является сдвиг T c , то при автоматизированном измерении сопротивления ее (T c ) практически автоматически можно определять из положения максимума производной dR(T, H)/dT . Если исследуются переключающие свойства гетероструктуры с ниобиевыми слоями [26][27][28], то влияние управляющей магнитной субструктуры на T c должно превышать ширину перехода T c (H) по критерию " 10−90", чтобы получить полное переключение между нормальным и СП состояниями.…”
Section: результаты и их обсуждениеunclassified
“…Unlike conventional electronics, spintronics uses not only charge transfer, but also the electron spin in solids, solving the problem of transport and recording of information [1][2][3][4][5][6][7]. Based on the basic nondissipative elements of spintronics, it is possible to create new superconducting nanoelectronics devices that consume minimum energy and have a high operation speed [8][9][10][11][12][13].…”
Section: Introductionmentioning
confidence: 99%
“…Practice shows that the creation of multilayer S/F nanostructures with the required properties is an extraordinarily complex process. Figure 1 and Figure 2 show actual spin-valve multilayer nanosystems formed from various materials [9]. As demonstrated in the figures, the structure of real nanosystems is far from ideal.…”
Section: Introductionmentioning
confidence: 99%