Abstract:During the initial operation of the International Thermonuclear Experimental Reactor (ITER), it is envisaged that activation will be minimised by using hydrogen (H) plasmas where the reference ion cyclotron resonance frequency (ICRF) heating scenarios rely on minority species such as helium ( 3 He) or deuterium (D). This paper firstly describes experiments dedicated to the study of 3 He heating in H plasmas with a sequence of discharges in which 5 MW of ICRF power was reliably coupled and the 3 He concentration, controlled in real-time, was varied from below 1 % up to 10 %. The minority heating regime was observed at low concentrations (up to 2 %). Energetic tails in the 3 He ion distributions were observed with effective temperatures up to 300 keV and bulk electron temperatures up to 6 keV. At around 2 %, a sudden transition was reproducibly observed to the mode conversion regime, in which the ICRF fast wave couples to short wavelength modes, leading to efficient direct electron heating and bulk electron temperatures up to 8 keV. Secondly, experiments performed to study D minority ion heating in H plasmas are presented. This minority heating scheme proved much more difficult since modest quantities of carbon (C) impurity ions, which have the same charge to mass ratio as the D ions, led directly to the mode conversion regime.Finally, numerical simulations to interpret these two sets of experiments are under way and preliminary results are shown.