In this paper, the problem of preview optimal control for second-order nonlinear systems for marine vessels is discussed on a fully actuated dynamic model. First, starting from a kinematic and dynamic model of a three-degrees-of-freedom (DOF) marine vessel, we derive a fully actuated second-order dynamic model that involves only the ship’s position and yaw angle. Subsequently, through the higher-order systems methodology, the nonlinear terms in the system were eliminated, transforming the system into a one-order parameterized linear system. Next, we designed an internal model compensator for the reference signal and constructed a new augmented error system based on this compensator. Then, using optimal control theory, we designed the optimal preview controller for the parameterized linear system and the corresponding feedback parameter matrices, which led to the preview controller for the original second-order nonlinear system. Finally, a numerical simulation indicates that the controller designed in this paper is highly effective.