2022
DOI: 10.21203/rs.3.rs-1763264/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Fully Automated Measurement on Coronal Alignment of Lower Limbs using Deep Convolutional Neural Networks on Radiographic Images

Abstract: Background A deep convolutional neural network (DCNN) system is proposed to measure the lower limb parameters of the mechanical lateral distal femur angle (mLDFA), medial proximal tibial angle (MPTA), lateral distal tibial angle (LDTA), joint line convergence angle (JLCA), and mechanical axis of the lower limbs. Methods Standing X-rays of 1000 patients’ lower limbs were examined for the DCNN and assigned to training, validation, and test sets. A coarse-to-fine network was employed to locate 20 key landmarks … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?