A multi‐function radar is designed to perform disparate functions, such as surveillance, tracking, fire control, amongst others, within a limited resource (time, frequency, and energy) budget. A radar resource management (RRM) module within a radar system makes decisions on prioritisation, parameter selection, and scheduling of associated tasks. However, optimal RRM algorithms are generally computationally complex and operational radars resort to heuristics. On the other hand, algorithms based on artificial intelligence (AI) have been shown to yield near‐optimal radar resource allocation results at manageable computational complexity. This survey study aims at enabling researchers and practitioners better understand the application of AI in RRM‐related problems by providing a thorough literature review of AI‐based RRM techniques. We first provide background concepts in RRM followed by a brief review of Symbolic‐AI techniques for RRM. We mainly focus on the applications of state‐of‐the‐art machine learning techniques to RRM. We emphasise on the recent findings and their potential within practical RRM scenarios for real‐time resource allocation optimisation. The study concludes with a discussion of open research problems and future research directions in the light of the presented survey.