Direct measurements of soil hydraulic properties are time-consuming, challenging, and often expensive. Therefore, their indirect estimation via pedotransfer functions (PTFs) based on easily collected properties like soil texture, bulk density, and organic matter content is desirable. This study was carried out to assess the accuracy of the pseudo continuous neural network PTF (PCNN-PTF) approach for estimating the soil water retention curve of 153 international soils (a total of 12,654 measured water retention pairs) measured via the evaporation method. In addition, an independent data set from Turkey (79 soil samples with 7729 measured data pairs) was used to evaluate the reliability of the PCNN-PTF. The best PCNN-PTF showed high accuracy (root mean square error (RMSE) = 0.043 cm3 cm−3) and reliability (RMSE = 0.061 cm3 cm−3). When Turkish soil samples were incorporated into the training data set, the performance of the PCNN-PTF was enhanced by 33%. Therefore, to further improve the performance of the PCNN-PTF for new regions, we recommend the incorporation of local soils, when available, into the international data sets and developing new sets of PCNN-PTFs.