Efficient algorithms for computing and processing additively weighted Voronoi diagrams on planar graphs have been instrumental in obtaining several recent breakthrough results, most notably the almost-optimal exact distance oracle for planar graphs [Charalampopoulos et al., STOC'19], and subquadratic algorithms for planar diameter [Cabello, SODA'17, Gawrychowski et al., SODA'18]. In this paper, we show how Voronoi diagrams can be useful in obtaining dynamic planar graph algorithms and apply them to classical problems such as dynamic single-source shortest paths and dynamic strongly connected components.First, we give a fully dynamic single-source shortest paths data structure for planar weighted digraphs with O(n 4/5 ) worst-case update time and O(log 2 n) query time. Here, a single update can either change the graph by inserting or deleting an edge, or reset the source s of interest. All known non-trivial planarity-exploiting exact dynamic single-source shortest paths algorithms to date had polynomial query time. Further, note that a data structure with strongly sublinear update time capable of answering distance queries between all pairs of vertices in polylogarithmic time would refute the APSP conjecture [Abboud and Dahlgaard, FOCS'16].Somewhat surprisingly, the Voronoi diagram based approach we take for single-source shortest paths can also be used in the fully dynamic strongly connected components problem. In particular, we obtain a data structure maintaining a planar digraph under edge insertions and deletions, capable of returning the identifier of the strongly connected component of any query vertex. The worst-case update and query time bounds are the same as for our single-source distance oracle. To the best of our knowledge, this is the first fully dynamic strong-connectivity algorithm achieving both sublinear update time and polylogarithmic query time for an important class of digraphs.