2018
DOI: 10.1016/j.oceaneng.2018.01.009
|View full text |Cite
|
Sign up to set email alerts
|

Fully nonlinear simulation of wave interaction with a cylindrical wave energy converter in a numerical wave tank

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
5
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 29 publications
(5 citation statements)
references
References 25 publications
0
5
0
Order By: Relevance
“…However, fully appreciating the nonlinear complexity of a real system is likely to require overly time-consuming models based on spatial discretization of at least the wetted surface [ 14 , 39 ], or the whole fluid domain [ 1 , 28 ]. Due to their computational cost, these models are unfeasible for extensive design purposes.…”
Section: Introductionmentioning
confidence: 99%
“…However, fully appreciating the nonlinear complexity of a real system is likely to require overly time-consuming models based on spatial discretization of at least the wetted surface [ 14 , 39 ], or the whole fluid domain [ 1 , 28 ]. Due to their computational cost, these models are unfeasible for extensive design purposes.…”
Section: Introductionmentioning
confidence: 99%
“…These coupling methodologies aim to combine the advances in WEC-wave interaction solvers (or the so called wave-structure interaction solvers) with existing wave propagation models. Research in WEC-wave interactions has focused on obtaining a better and more complex representation of PTO modelling [20], WEC farm layout optimization [21,22], WEC hydrodynamic performance [23][24][25][26][27][28], WEC behaviour under extreme waves [29,30] or WEC concept design [31][32][33]. This has led to different coupled models composed of different layers of complexity: (i) a linear potential flow wave propagation model coupled with a linear WEC-wave interaction solver based on the boundary element method (BEM) [34][35][36][37], (ii) a non-linear potential flow wave propagation model coupled to a linear WEC-wave interaction solver based on BEM [38], (iii) a non-linear potential flow wave propagation model coupled to a non-linear WEC-wave interaction solver based on smoothed particle hydrodynamics (SPH) [24] and (iv) a non-linear potential flow wave propagation model coupled to a non-linear WEC-wave interaction solver based on computer fluid dynamics (CFD) [39].…”
Section: Introductionmentioning
confidence: 99%
“…Longuet-Higgins and Cokelet introduced the boundary element method for the simulation of steep free surface waves [31]. Since then, BEM has been widely used for simulating the surface wave [32][33][34][35][36]. Meanwhile, comparisons of two-dimensional numerical results with laboratory experiments have shown that the potential theory can predict the characteristics of wave shoaling over slopes accurately [37][38][39].…”
Section: Introductionmentioning
confidence: 99%