2022
DOI: 10.48550/arxiv.2210.02732
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Fully Unsupervised Training of Few-shot Keyword Spotting

Abstract: For training a few-shot keyword spotting (FS-KWS) model, a large labeled dataset containing massive target keywords has known to be essential to generalize to arbitrary target keywords with only a few enrollment samples. To alleviate the expensive data collection with labeling, in this paper, we propose a novel FS-KWS system trained only on synthetic data. The proposed system is based on metric learning enabling target keywords to be detected using distance metrics. Exploiting the speech synthesis model that g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?