2019
DOI: 10.3390/robotics8030062
|View full text |Cite
|
Sign up to set email alerts
|

FumeBot: A Deep Convolutional Neural Network Controlled Robot

Abstract: This paper describes the development of a convolutional neural network for the control of a home monitoring robot (FumeBot). The robot is fitted with a Raspberry Pi for on board control and a Raspberry Pi camera is used as the data feed for the neural network. A wireless connection between the robot and a graphical user interface running on a laptop allows for the diagnostics and development of the neural network. The neural network, running on the laptop, was trained using a supervised training method. The ro… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
4
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 22 publications
0
4
0
1
Order By: Relevance
“…Takođe, ustanovljeno je da je mreža pogodna za učenje i obavljanje raznovrsnih zadataka na putevima sa i bez obeleženih traka, kao i to da se njenom primenom može zameniti upotreba konvencionalnog PID kontrolera. Istraživanje [42] takođe koristi 2D CNN kao kontroler, ali specijalno obučenu za izbegavanje prepreka na putu. Mreža obučena za izbegavanje prepreka u laboratoriji postiže tačnost od 95% do 97%, dok druga mreža, za izbegavanje prepreka u hodniku ostvaruje tačnost od 93-96%.…”
Section: Dvodimenzionalne Konvolucione Mreže -2dunclassified
“…Takođe, ustanovljeno je da je mreža pogodna za učenje i obavljanje raznovrsnih zadataka na putevima sa i bez obeleženih traka, kao i to da se njenom primenom može zameniti upotreba konvencionalnog PID kontrolera. Istraživanje [42] takođe koristi 2D CNN kao kontroler, ali specijalno obučenu za izbegavanje prepreka na putu. Mreža obučena za izbegavanje prepreka u laboratoriji postiže tačnost od 95% do 97%, dok druga mreža, za izbegavanje prepreka u hodniku ostvaruje tačnost od 93-96%.…”
Section: Dvodimenzionalne Konvolucione Mreže -2dunclassified
“…More recent efforts to improve the predictive capabilities of autonomous mobile robots have been based upon the development of increasingly sophisticated artificial neural networks (ANNs) [9]. For example, Tai et al [10] implemented an ANN by integrating a convolutional neural network(CNN)with the respective decision-making process to facilitate effective robot exploration based on visual cues. The autonomous mobile robot system was trained using annotated visual information related to the exploration task, and its efficiency was evaluated in a real-time application.…”
Section: Introductionmentioning
confidence: 99%
“…Implementing experimental results in two different robot control tasks on real root systems has been shown in [4], which is a rare example of a real robot system experiment. A convolutional neural network's development to control a home surveillance robot has been described in [5].…”
Section: Introductionmentioning
confidence: 99%