Bacterial persister cells constitute a small portion of a culture which is tolerant to killing by lethal doses of bactericidal antibiotics. These phenotypic variants are formed in numerous bacterial species, including those with clinical relevance like the opportunistic pathogen Pseudomonas aeruginosa. Although persisters are believed to contribute to difficulties in the treatment of many infectious diseases, the underlying mechanisms affecting persister formation are not well understood. Here we show that even though P. aeruginosa cultures have a significantly smaller fraction of multidrug-tolerant persister cells than cultures of Escherichia coli or Staphylococcus aureus, they can increase persister numbers in response to quorum-sensing-related signaling molecules. The phenazine pyocyanin (and the closely related molecule paraquat) and the acyl-homoserine lactone 3-OC12-HSL significantly increased the persister numbers in logarithmic P. aeruginosa PAO1 or PA14 cultures but not in E. coli or S. aureus cultures.Over the last 50 years, Pseudomonas aeruginosa has emerged as a major cause of nosocomial infections in immunocompromised patients, including those relying on mechanical ventilation and suffering from neutropenia or severe burns, and is perhaps most well known as the agent primarily responsible for the decline in lung function leading to death in cystic fibrosis (CF) patients (8,14,16,23,38). P. aeruginosa possesses a multiplicity of virulence factors that are elicited upon access to susceptible individuals, including various toxins, secretion systems, siderophores, surface appendages, endotoxin (lipopolysaccharide [LPS]), alginate, and phenazines. These can generate acute toxicity/injury, leading P. aeruginosa to be labeled as the "hyena" of the bacterial world (15). Treatment of infections by P. aeruginosa is hindered by its high level of intrinsic resistance to antibiotics due primarily to a combination of the impermeable outer membrane and a number of broad-spectrum efflux pumps (50, 51). P. aeruginosa is also thought to enter into a biofilm mode of growth in CF lung infections (36,48,63), contributing both to pathogenicity/colonization and resistance to therapeutic intervention.In P. aeruginosa, global regulation, mediated by at least 3 quorum-sensing (QS) systems, controls population behaviors and synthesis of the majority of these pathogenicity factors (59, 66). This bacterium possesses two N-acyl-homoserine lactone (HSL)-mediated quorum-sensing systems, las and rhl (26,43,46,47), and a Pseudomonas quinolone signal (PQS) system mediated by 2-heptyl-3-hydroxy-4-quinolone (49). In the HSL-mediated systems, the HSL synthases LasI and RhlI are responsible for the synthesis of the autoinducers N-(3-oxododecanoyl)-L-HSL (3-OC12-HSL) and N-butyryl-L-HSL (C4-HSL), respectively. Expressions of the lasI and rhl genes are regulated by the transcriptional activators LasR and RhlR in response to their cognate HSL signal molecules. Among the numerous cellular and secreted virulence factors in P. aeruginosa whose...