Members of the Burkholderia cepacia complex (Bcc) are respiratory pathogens in patients with cystic fibrosis (CF). Close repetitive DNA sequences often associate with surface antigens to promote genetic variability in pathogenic bacteria. The genome of Burkholderia cenocepacia J2315, a CF isolate belonging to the epidemic lineage Edinburgh-Toronto (ET-12), was analysed for the presence of close repetitive DNA sequences. Among the 422 DNA close repeats, 45 genes potentially involved in virulence were identified and grouped into 12 classes; of these, 13 genes were included in the antigens class. Two trimeric autotransporter adhesins (TAA) among the 13 putative antigens are absent from the other Burkholderia genomes and are clustered downstream of the cci island that is a marker for transmissible B. cenocepacia strains. This cluster contains four adhesins, one outer-membrane protein, one sensor histidine kinase and two transcriptional regulators. By using PCR, we analysed three genes among 47 Bcc isolates to determine whether the cluster was conserved. These three genes were present in the isolates of the ET-12 lineage but absent in all the other members. Furthermore, the BCAM0224 gene was exclusively detected in this epidemic lineage and may serve as a valuable new addition to the field of Bcc diagnostics. The BCAM0224 gene encodes a putative TAA that demonstrates adhesive properties to the extracellular matrix protein collagen type I. Quantitative real-time PCR analysis indicated that BCAM0224 gene expression occurred preferentially for cells grown under high osmolarity, oxygen-limited conditions and oxidative stress. Inactivation of BCAM0224 in B. cenocepacia attenuates the ability of the mutant to promote cell adherence in vitro and impairs the overall bacterial virulence against Galleria mellonella as a model of infection. Together, our data show that BCAM0224 from B. cenocepacia J2315 represents a new collagen-binding TAA with no bacterial orthologues which has an important role in cellular adhesion and virulence.