The Agrobacterium tumefaciens C58 genome harbors an operon containing the dmeR (Atu0890) and dmeF (Atu0891) genes, which encode a transcriptional regulatory protein belonging to the RcnR/CsoR family and a metal efflux protein belonging to the cation diffusion facilitator (CDF) family, respectively. The dmeRF operon is specifically induced by cobalt and nickel, with cobalt being the more potent inducer. Promoter-lacZ transcriptional fusion, an electrophoretic mobility shift assay, and DNase I footprinting assays revealed that DmeR represses dmeRF transcription through direct binding to the promoter region upstream of dmeR. A strain lacking dmeF showed increased accumulation of intracellular cobalt and nickel and exhibited hypersensitivity to these metals; however, this strain displayed full virulence, comparable to that of the wild-type strain, when infecting a Nicotiana benthamiana plant model under the tested conditions. Cobalt, but not nickel, increased the expression of many iron-responsive genes and reduced the induction of the SoxR-regulated gene sodBII. Furthermore, control of iron homeostasis via RirA is important for the ability of A. tumefaciens to cope with cobalt and nickel toxicity.
IMPORTANCEThe molecular mechanism of the regulation of dmeRF transcription by DmeR was demonstrated. This work provides evidence of a direct interaction of apo-DmeR with the corresponding DNA operator site in vitro. The recognition site for apo-DmeR consists of 10-bp AT-rich inverted repeats separated by six C bases (5=-ATATAGTATACCCCCCTATAGTATAT-3=). Cobalt and nickel cause DmeR to dissociate from the dmeRF promoter, which leads to expression of the metal efflux gene dmeF. This work also revealed a connection between iron homeostasis and cobalt/nickel resistance in A. tumefaciens.
Cobalt is required by coenzyme B 12 -dependent enzymes and several proteins (1, 2). However, cobalt overload can cause cellular toxicity by catalyzing the generation of reactive oxygen species (3, 4), which leads to iron and glutathione depletion, and thus disturbing iron homeostasis (4-6). Cobalt competes with iron in heme proteins (7) and inhibits the activity of iron-sulfur (Fe-S) proteins as shown in Escherichia coli (5) and Salmonella enterica (6). To avoid cobalt toxicity, levels of intracellular cobalt must be properly controlled. Cobalt trafficking systems in the cell, including uptake systems, efflux systems, and metallochaperones, help maintain cobalt at levels suitable for growth (8).To prevent intracellular cobalt overload-mediated toxicity, excessive amounts of cobalt are eliminated by efflux systems involving components such as the major facilitator superfamily (MFS), P 1B-4 -ATPase, resistance nodulation cell division (RND), cation/ proton antiporter, and cation diffusion facilitator (CDF). The E. coli RcnA (resistance to cobalt and nickel) efflux pump belongs to a unique family that is responsible for the detoxification of cobalt and nickel (9). The expression of rcnA is negatively regulated by RcnR (10). CoaT is a P 1B-...