The high energy demands of the heart are primarily met by the mitochondrial oxidation of fatty acids and carbohydrates (glucose and lactate). 1 The amount of ATP produced depends on overall mitochondrial oxidative capacity, oxygen supply to the myocardium, and the supply of substrates for oxidative metabolism.1 In hypertrophy and HF, a decrease in high-energy phosphates in the heart has been observed. 5,6 However, it is not clear whether this is attributable entirely to a decrease in mitochondrial oxidative capacity, a switch in energy substrate preference, or a less efficient use of energy. The question also arises as to whether these metabolic changes are a consequence of HF, per se, or whether they are an early event that may contribute to the development and progression of HF.Glucose use in the heart is highly dependent on insulin, and any decrease in responsiveness of the heart to insulin can create a state of cardiac insulin-resistance.7 Insulin facilitates glucose entry by inducing the translocation of glucose transporter 4 (GLUT4) from intracellular storage vesicles to the sarcolemmal membrane.8 Decreasing GLUT4 availability exacerbates Background-Cardiac hypertrophy is accompanied by significant alterations in energy metabolism. Whether these changes in energy metabolism precede and contribute to the development of heart failure in the hypertrophied heart is not clear. Methods and Results-Mice were subjected to cardiac hypertrophy secondary to pressure-overload as a result of an abdominal aortic constriction (AAC). The rates of energy substrate metabolism were assessed in isolated working hearts obtained 1, 2, and 3 weeks after AAC. Mice subjected to AAC demonstrated a progressive development of cardiac hypertrophy. In vivo assessment of cardiac function (via echocardiography) demonstrated diastolic dysfunction by 2 weeks (20% increase in E/E′), and systolic dysfunction by 3 weeks (16% decrease in % ejection fraction). Marked cardiac insulin-resistance by 2 weeks post-AAC was evidenced by a significant decrease in insulin-stimulated rates of glycolysis and glucose oxidation, and plasma membrane translocation of glucose transporter 4. Overall ATP production rates were decreased at 2 and 3 weeks post-AAC (by 37% and 47%, respectively) because of a reduction in mitochondrial oxidation of glucose, lactate, and fatty acids that was not accompanied by an increase in myocardial glycolysis rates. Reduced mitochondrial complex V activity was evident at 3 weeks post-AAC, concomitant with a reduction in the ratio of phosphocreatine to ATP. Conclusions-The development of cardiac insulin-resistance and decreased mitochondrial oxidative metabolism are early metabolic changes in the development of cardiac hypertrophy, which create an energy deficit that may contribute to the progression from hypertrophy to heart failure.