Heart failure mainly caused by ischemic or dilated cardiomyopathy is a life-threatening disorder worldwide. The previous work in cardiac surgery has led to many excellent surgical techniques for treating cardiac diseases, and these procedures are now able to prolong the human lifespan. However, surgical treatment for end-stage heart failure has been under-explored, although left ventricular assist device (LVAD) implantation and heart transplantation are options to treat the condition. LVAD can provide powerful circulatory support for end-stage heart failure patients and improve the survival and quality of life after implantation compared with the existing medical counterparts. Moreover, LVADs play a crucial role in the "bridge to transplantation", "bridge to recovery" and recently have served as "destination therapy". The structural and molecular changes that improve the cardiac function after LVAD implantation are called "reverse remodeling", which means that patients who have received a LVAD can be weaned from the LVAD with restoration of their cardiac function. This strategy is a desirable alternative to heart transplantation in terms of both the patient quality of life and due to the organ shortage. The mechanism of this bridge to recovery is interesting, and is different from other treatments for heart failure. Bridge to recovery therapy is one of the options in regenerative therapy which only a surgeon can provide. In this review, we pathophysiologically analyze the reverse remodeling phenomenon induced by LVAD and comment about the clinical evidence with regard to its impact on the bridge to recovery.