Salmon aquaculture generates 80% of the total revenue of finfish aquaculture across Canada. Salmon farming is carried out in a multilevel process, and at least 60% of the total production is considered as by-products, including skin, head, viscera, trimming, frames, bones, and roes. These by-products are an excellent source of protein, which can be converted to protein hydrolysates through enzymatic hydrolysis and non-enzymatic processes such as chemical hydrolysis (acid and alkaline) and salt extraction. Several studies have reported that peptides from salmon protein hydrolysates possess bioactivities, including antihypertensive, antioxidant, anticancer, antimicrobial, antidiabetic, anti-allergic, and cholesterol-lowering effects. Incorporating in-silico computational methods is gaining more attention to identify potential peptides from source protein. The in-silico methods can be used to predict the properties of the peptides and thereby predetermine the processing, isolation, and purification steps that can be used for the peptides of interest. Therefore, it is essential to implement robust, standardized, and cost-effective processing techniques that can easily be transferrable and scale up for industrial applications. This contribution summarizes the latest research information on Atlantic salmon, production statistics, growth lifecycle, processing, protein production techniques, nutritional and functional properties, peptide production and purification processes, as well as potential health benefits as a nutraceutical product.