In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog. Genomic analyses showed that this marR is located in an arsenic gene island in Achromobacter sp. As-55 adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite (MAs(III)), the organoarsenic compound roxarsone(III) (Rox(III)), and the inorganic antimonite (Sb(III)). Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37 and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSA) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Roxarsone(III) and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics.