The house mouse has been used as a privileged model organism since the early days of genetics, and the numerous experiments made with this small mammal have regularly contributed to enrich our knowledge of mammalian biology and pathology, ranging from embryonic development to metabolic disease, histocompatibility, immunology, behavior, and cancer. Over the past two decades, a number of large-scale integrated and concerted projects have been undertaken that will probably open a new era in the genetics of the species. The sequencing of the genome, which will allow researchers to make comparisons with other mammals and identify regions conserved by evolution, is probably the most important project, but many other initiatives, such as the massive production of point or chromosomal mutations associated with comprehensive and standardized phenotyping of the mutant phenotypes, will help annotation of the ∼25,000 genes packed in the mouse genome. In the same way, and as another consequence of the sequencing, the discovery of many single nucleotide polymorphisms and the development of new tools and resources, like the Collaborative Cross, will contribute to the development of modern quantitative genetics. It is clear that mouse genetics has changed dramatically over the last 10-15 years and its future looks promising.