Tumour DNA contains thousands of single nucleotide variants (SNVs) in non-protein-coding regions, yet it remains unclear which are “driver mutations” that promote cell fitness. Amongst the most highly mutated non-coding elements are long noncoding RNAs (lncRNAs), which can promote cancer and may be targeted therapeutically. We here searched for evidence that driver mutations may act through alteration of lncRNA function. Using an integrative driver discovery algorithm, we analysed single nucleotide variants (SNVs) from 2583 primary tumours and 3527 metastases to reveal 54 candidate “driver lncRNAs” (FDR<0.1). Their relevance is supported by enrichment for previously-reported cancer genes and by clinical and genomic features. Using knockdown and transgene overexpression, we show that tumour SNVs in two novel lncRNAs can boost cell fitness. Researchers have noted particularly high yet unexplained mutation rates in the iconic cancer lncRNA, NEAT1. We apply in cellulo mutagenesis by CRISPR-Cas9 to identify vulnerable regions of NEAT1 where SNVs reproducibly increase cell fitness in both transformed and normal backgrounds. In particular, mutations in the 5’ region of NEAT1 alter ribonucleoprotein assembly and boost the population of subnuclear paraspeckles. Together, this work reveals function-altering somatic lncRNA mutations as a new route to enhanced cell fitness during transformation and metastasis.