Ebola virus is a highly lethal¯lovirus, claimed thousands of people in its recent outbreak. Seven viral proteins constitute ebola viral structure, and four of them (nucleoprotein (NP), polymerase L, VP35 and VP30) participate majorly in viral replication and transcription. We have elucidated a conformation change of NP cleft by VP35 NP-binding protein domains through superimposing two experimental NP structure images and discussed the function of this conformation change in the replication and transcription with polymerase complex (L, VP35 and VP30). The important roles of VP30 in viral RNA synthesis have also been discussed. A \tapping" model has been proposed in this paper for a better understanding of the interplay among the four viral proteins (NP, polymerase L, VP35 and VP30). Moreover, we have pinpointed some key residue changes on NP (both NP N-and C-terminal) and L between Reston and Zaire by computational studies. Together, this paper provides a description of interactions among ebola viral proteins (NP, L, VP35, VP30 and VP40) in viral replication and transcription, and sheds light on the complex system of viral reproduction.