Erv1p is a FAD-dependent sulfhydryl oxidase of the mitochondrial intermembrane space. It contains three conserved disulfide bonds arranged in two CXXC motifs and one CX 16 C motif. Experimental evidence for the specific roles of the individual disulfide bonds is lacking. In this study, structural and functional roles of the disulfides were dissected systematically using a wide range of biochemical and biophysical methods. Three double cysteine mutants with each pair of cysteines mutated to serines were generated. All of the mutants were purified with the normal FAD binding properties as the wild type Erv1p, showing that none of the three disulfides are essential for FAD binding. Thermal denaturation and trypsin digestion studies showed that the CX 16 C disulfide plays an important role in stabilizing the folding of Erv1p. To understand the functional role of each disulfide, small molecules and the physiological substrate protein Mia40 were used as electron donors in oxygen consumption assays. We show that both CXXC disulfides are required for Erv1 oxidase activity. The active site disulfide is well protected thus requires the shuttle disulfide for its function. Although both mutants of the CXXC motifs were individually inactive, Erv1p activity was partially recovered by mixing these two mutants together, and the recovery was rapid. Thus, we provided the first experimental evidence of electron transfer between the shuttle and active site disulfides of Erv1p, and we propose that both intersubunit and intermolecular electron transfer can occur.Disulfide bonds play very important roles in the structure and function of many proteins by stabilizing protein folding and/or acting as thiol/disulfide redox switches. The process of disulfide formation is catalyzed by dedicated enzymes in vivo (1-4). Erv1p is a FAD-dependent sulfhydryl oxidase located in the Saccharomyces cerevisiae mitochondrial intermembrane space (4 -6). It is an essential component of the redox regulated Mia40/Erv1 import and assembly pathway used by many of the cysteine-containing intermembrane space proteins, such as members of the "small Tim" and Cox17 families (7-10). Upon import of a Cys-reduced substrate, Mia40 interacts with the substrate via intermolecular disulfide bond and shuttles a disulfide to its substrate. Although oxidized Mia40 promotes disulfide bond formation in the substrates, Erv1p functions in catalyzing reoxidation of the reduced Mia40 and/or release of the substrate (11-13).The common features for the FAD-dependent sulfhydryl oxidases are that the enzymes can catalyze the electron transfer from substrate molecules (e.g. protein thiols) through the noncovalent bound FAD cofactor to molecular oxygen or oxidized cytochrome c (14). The sulfhydryl oxidases can be divided into three groups: Ero1 enzymes, multidomain quiesin sulfhydryl oxidases, and single domain Erv (essential for respiration and vegetative growth)/ALR proteins. The yeast Ero1p and the mammalian homologues (Ero1␣ and Ero1) are large flavoenzymes present in the ER with...