SUMMARY
Directed reprogramming of human fibroblasts into fully-differentiated neurons requires massive changes in epigenetic and transcriptional states. Induction of a chromatin environment permissive to acquiring neuronal subtype identity is therefore a major barrier to fate conversion. Here we show that the brain-enriched miRNAs miR-9/9* and miR-124 (miR-9/9*-124) trigger reconfiguration of chromatin accessibility, DNA methylation, and mRNA expression to induce a default neuronal state. MiR-9/9*-124-induced neurons (miNs) are functionally excitable and are uncommitted towards specific subtypes yet possess open chromatin at neuronal subtype-specific loci, suggesting such identity can be imparted by additional lineage-specific transcription factors. Consistently, we show ISL1 and LHX3 selectively drive conversion to a highly homogenous population of human spinal cord motor neurons. Taken together, this study shows modular synergism between miRNAs and neuronal subtype-specific transcription factors can drive lineage-specific neuronal reprogramming, thereby providing a general platform for high-efficiency generation of distinct subtypes of human neurons.