Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ocimum species have a great interest in different traditional medicinal systems. This study examined the chemical composition, antioxidant properties, enzyme inhibitory effects, and antibacterial and antifungal activities of the aerial parts of Ocimum gratissimum, Ocimum americanum, and Ocimum basilicum from the Comoros Islands. The extracts were analyzed using high‐performance liquid chromatography‐mass spectrometry (HPLC‐MS) to determine their chemical composition. Antioxidant activity was assessed using 2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), chelating ability, and phosphomolybdenum radical scavenging assays. Enzyme inhibitory activities against acetylcholinesterase (AChE), butrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase were evaluated using spectrophotometric methods. Antibacterial and antifungal activities were tested using the broth microdilution method against selected pathogenic microorganisms. The selected enzymes and proteins were evaluated using in silico methods with biomolecules from these plants. In addition, 111 different metabolites were identified in the tested extracts using advanced HPLC/MS techniques. The most significant number of detected compounds were derivatives of hydroxycinnamic acids, followed by flavonoid glycosides and aglycones and derivatives of hydroxybenzoic acids. All three Ocimum species exhibited significant antioxidant activities, O. gratissimum exhibited the best‐reducing abilities in CUPRAC and FRAP assays. In addition, enzyme inhibitory assays revealed that O. americanum had the most potent inhibitory effect on tyrosinase (48.01 ± 3.89 mg kojic acid equivalent [KAE]/g), and amylase (1.08 ± 0.02 mmol acarbose equivalent [ACAE]/g). Antibacterial and antifungal tests demonstrated that the extracts possess broad‐spectrum activity. Molecular docking results showed that compounds exhibited remarkable binding energies with target enzymes and proteins. The molecular dynamics simulations identified chicoric acid with MurE of Staphylococcus aureus complex as the most promising drug candidate. These findings support their traditional medical and nutraceutical uses and suggest possibilities for natural functional applications.
Ocimum species have a great interest in different traditional medicinal systems. This study examined the chemical composition, antioxidant properties, enzyme inhibitory effects, and antibacterial and antifungal activities of the aerial parts of Ocimum gratissimum, Ocimum americanum, and Ocimum basilicum from the Comoros Islands. The extracts were analyzed using high‐performance liquid chromatography‐mass spectrometry (HPLC‐MS) to determine their chemical composition. Antioxidant activity was assessed using 2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS), cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), chelating ability, and phosphomolybdenum radical scavenging assays. Enzyme inhibitory activities against acetylcholinesterase (AChE), butrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase were evaluated using spectrophotometric methods. Antibacterial and antifungal activities were tested using the broth microdilution method against selected pathogenic microorganisms. The selected enzymes and proteins were evaluated using in silico methods with biomolecules from these plants. In addition, 111 different metabolites were identified in the tested extracts using advanced HPLC/MS techniques. The most significant number of detected compounds were derivatives of hydroxycinnamic acids, followed by flavonoid glycosides and aglycones and derivatives of hydroxybenzoic acids. All three Ocimum species exhibited significant antioxidant activities, O. gratissimum exhibited the best‐reducing abilities in CUPRAC and FRAP assays. In addition, enzyme inhibitory assays revealed that O. americanum had the most potent inhibitory effect on tyrosinase (48.01 ± 3.89 mg kojic acid equivalent [KAE]/g), and amylase (1.08 ± 0.02 mmol acarbose equivalent [ACAE]/g). Antibacterial and antifungal tests demonstrated that the extracts possess broad‐spectrum activity. Molecular docking results showed that compounds exhibited remarkable binding energies with target enzymes and proteins. The molecular dynamics simulations identified chicoric acid with MurE of Staphylococcus aureus complex as the most promising drug candidate. These findings support their traditional medical and nutraceutical uses and suggest possibilities for natural functional applications.
Celtis australis L. (Family: Cannabaceae) is commonly used to treat many diseases like gastrointestinal problems, menstrual bleeding and amenorrhea. The present study was designed to investigate the chemical constituents, antioxidant, enzyme inhibitory and cytotoxic properties of different extracts from twigs, fruits and leaves of C. australis. EtOAc, EtOH, 70% EtOH and aqueous extracts were prepared by maceration. Results showed that the EtOH extract of the leaves had the highest total phenolic content and possessed remarkable antiradical, ion reducing and total antioxidant activities. Additionally, the leaves (EtOH or EtOAc extracts) exerted the best enzyme inhibition properties. The polar extracts of the leaves had significant cytotoxic effect against the human colorectal adenocarcinoma (HT‐29) and human prostate cancer (DU‐145) cell lines while the EtOAc of the twigs was effective against the former cell line. Phytochemically, the twigs and fruits accumulated high content of vanillic acid, 4‐hydroxy benzoic acid and syringic acid. Through a combination of in vitro and in silico approaches, we identified key phytochemicals exhibited significant inhibitory effects on several cancer‐related proteins, through in vitro and in silico approaches that show significant inhibition of cancer‐related proteins. In conclusion, these findings indicated that C. australis could be a promising source of bioactive molecules for food, pharmaceutical and cosmetic industries.
Stellaria media L., also called chickweed, is widespread in all parts of the world. In the present study, we investigated the biological properties and chemical profiles of different extracts (ethyl acetate, ethanol, ethanol/water, and water) of S. media. The chemical profiles were examined using UHPLC/MS/MS technique. Regarding the biological properties, antioxidant properties as well as enzyme‐inhibiting and cytotoxic effects of the extracts were demonstrated by in vitro methods. To obtain further information about the structure‐ability relationship, network pharmacology and molecular docking were also performed. Twelve phenolic compounds were identified in the extracts and most of them were flavonoids (apigenin, kaempferol derivatives, etc.). The water extract showed the best free radical scavenging activity, while the ethanol was the most active in reducing power tests. When inhibiting AChE, the ethyl acetate extract showed the best inhibitory effect. The water extract has a good cytotoxic effect on HepG2 (cell viability: 33.9% at a concentration of 100 g/mL). The analysis, performed using the STRING database, included these 45 cancer‐associated targets. The identified hub genes were TP53, CDKN2A, PTEN, KRAS, and HRAS. In molecular docking analysis, acacetin‐O‐hexoside‐O‐deoxyhexoside and napigenin‐7‐O‐hexoside exhibit remarkable binding energies with proteins. Consequently, S. media can be potential raw materials for designing functional formulations in the pharmaceutical, nutraceutical, and cosmeceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.