Sorcin is a 22 kDa calcium binding protein that is widely distributed in mammalian tissues, including brain, and is associated with the ryanodine receptor (RyR) family of intracellular calcium-release channels in the heart. To determine the cellular sites for potential central functions of sorcin, we examined the electron microscopic immunocytochemical localization of antipeptide antisera against sorcin and against cardiac and brain RyR in the rat caudate-putamen nucleus (CPN), one of the few regions expressing high levels of brain RyR. Sorcin-like immunoreactivity (S-LI) was detected in both neurons and glia by using immunoperoxidase and immunogold methods. Of 1,735 profiles containing immunogold-silver labeling for sorcin, almost 50% were dendrites and many of these dendrites were spiny. The remainder were mainly small axons, axon terminals, and, more rarely, glia. Furthermore, analysis of dually labeled tissue sections showed the presence of sorcin in many of the dendrites and some of the axonal and glial processes containing RyR. In dendrites, gold-silver deposits showing S-LI were prominently localized to saccules of smooth endoplasmic reticulum and mitochondria, both of which are known to store calcium. These labeled structures were located near the plasma membrane at sites postsynaptic to excitatory-type asymmetric junctions, as well as non-synaptic portions of the plasma membrane. In axons, S-LI was also often seen at extrasynaptic sites on, or near, the plasma membrane. We conclude that in the rat CPN, sorcin may act independently or, in conjunction with RyR, to modulate cytoplasmic release of calcium, mainly from smooth endoplasmic reticulum and/or mitochondria in neurons.