Summary
We propose novel estimation approaches for generalized varying coefficient models that are tailored for unsynchronized, irregular and infrequent longitudinal designs/data. Unsynchronized longitudinal data refers to the time-dependent response and covariate measurements for each individual measured at distinct time points. The proposed methods are motivated by data from the Comprehensive Dialysis Study (CDS). We model the potential age-varying association between infection-related hospitalization status and the inflammatory marker, C-reactive protein (CRP), within the first two years from initiation of dialysis. Traditional longitudinal modeling cannot directly be applied to unsynchronized data and no method exists to estimate time- or age-varying effects for generalized outcomes (e.g., binary or count data) to date. In addition, through the analysis of the CDS data and simulation studies, we show that preprocessing steps, such as binning, needed to synchronize data to apply traditional modeling can lead to significant loss of information in this context. In contrast, the proposed approaches discard no observation; they exploit the fact that although there is little information in a single subject trajectory due to irregularity and infrequency, the moments of the underlying processes can be accurately and efficiently recovered by pooling information from all subjects using functional data analysis. Subject-specific mean response trajectory predictions are derived and finite sample properties of the estimators are studied.