A dibenzofuran (DF)-degrader Terrabacter sp. strain DBF63 harbors the dbfA and dbfBC genes for DF degradation and the fln-dbfA, pht, and pca gene clusters for the utilization of fluorene (FN) as a sole carbon source. From this strain, dfdA1, the gene encoding the second DF dioxygenase was detected using degenerate polymerase chain reaction (PCR) and the dfdA1A2A3A4 genes were cloned from a cosmid library of the DBF63 genome. Nucleotide sequencing revealed that the dfdA genes showed considerably high identities with those of other actinobacteria, such as Terrabacter sp. strain YK3 and Rhodococcus sp. strain HA01. In the neighboring region of the dfdA genes, as many as 11 homologs for transposase and integrase genes and the putative extradiol dioxygenase gene disrupted by an insertion sequence (dfdB::ISTesp2) were found, suggesting that repeated gene rearrangement had occurred. Quantitative reverse transcription-PCR analysis revealed that dfdA1 was expressed primarily in the DF-fed strain, whereas dbfA1 was expressed in the FN-cultured strain, apparently indicating that the dfdA genes are induced by DF for the initial hydroxylation of DF in strain DBF63. Furthermore, two polycistronic gene cassettes consisting of either dfdA or dbfA together with the dbfBC gene were constructed and expressed heterologously in Streptomyces lividans, degrading DF to salicylate. Furthermore, the expressed DfdA dioxygenase degraded dibenzo-p-dioxin, carbazole, dibenzothiophene, anthracene, phenanthrene, and biphenyl, thereby exhibiting a broader substrate range than that of the DbfA dioxygenase.