Functional data are generally curves indexed over a time domain, and land-use regression (LUR) is a promising spatial technique for generating high-resolution spatial estimation of retrospective long-term air pollutants. We developed a methodology for the novel functional land-use regression (FLUR) model, which provides high-resolution spatial and temporal estimations of retrospective pollutants. Long-term fine particulate matter (PM2.5) in the megacity of Tehran, Iran, was used as the practical example. The hourly measured PM2.5 concentrations were averaged for each hour and in each air monitoring station. Penalized smoothing was employed to construct the smooth PM2.5 diurnal curve using averaged hourly data in each of the 30 stations. Functional principal component analysis (FPCA) was used to extract FPCA scores from pollutant curves, and LUR models were fitted on FPCA scores. The mean of all PM2.5 diurnal curves had a maximum of 39.58 µg/m3 at 00:26 a.m. and a minimum of 29.27 µg/m3 at 3:57 p.m. The FPCA explained about 99.5% of variations in the observed diurnal curves across the city using just three components. The evaluation of spatially predicted long-term PM2.5 diurnal curves every 15 min provided a series of 96 high-resolution exposure maps. The presented methodology and results could benefit future environmental epidemiological studies.